
1

CPRE 281 Final Project: VGA GPU
Jonathan Hess

For my project I decided to create a VGA module that could output to a monitor. I started just
trying to get a simple color onto the screen. To do this I looked up what the VGA protocol looks
like as well as what would be needed to get the syncing correct.
This was the easiest step because most of the information is readily available.

https://blog.thomaspoulet.fr/assets/content/VGA/logic1.png
https://blog.thomaspoulet.fr/assets/content/VGA/bsferror.png
https://blog.thomaspoulet.fr/bit-banged-vga/
http://lslwww.epfl.ch/pages/teaching/cours_lsl/ca_es/VGA.pdf
https://web.mit.edu/6.111/www/labkit/vga.shtml

With this knowledge I had to create the pixel clock. Thankfully after some time I learned that the
25.175 mhz pixel clock doesn’t have to be completely accurate and simply dividing the 50mhz
would suffice. I created a simple verilog divider but I could have used a simple T flip flop instead.
I was originally planning on allowing the user to change their resolution (and which they would
also change the frequency making this module do more than just divide by 2).

Next was the H_sync and H_blank. Originally, I had them as separate modules but it makes a
lot more sense to combine them into one counter.

https://blog.thomaspoulet.fr/assets/content/VGA/logic1.png
https://blog.thomaspoulet.fr/assets/content/VGA/bsferror.png
https://blog.thomaspoulet.fr/bit-banged-vga/
http://lslwww.epfl.ch/pages/teaching/cours_lsl/ca_es/VGA.pdf
https://web.mit.edu/6.111/www/labkit/vga.shtml


2

It works as a simple counter that resets after 800 clock cycles (or one line on the monitor).

During these it pulls the h_sync high except in the 96 cycles after the front porch and pulls the
h_blank low when not in active video.



3

This module could be implemented with a simple counter with 9 bits (d flip flops) instead of
using verilog.

The Vsync is similar to how it computes the vsync and v_blank.



4

With all of this I could set the pins of RGB and have a colored screen with 8 options!

Video of basic colors:
https://drive.google.com/file/d/1dKky_hVdC9blb6mkqQ52f_EU8sofT8pk/view?usp=sharing

After this I tried to get the loading off the SDRAM (Synchronized Dynamic Ram). I couldn’t get to
read anything (especially because I hadn’t written anything to it). I was hoping that it would
show some random colors because it would be random but it was either zeroed out or didn’t
work. The reason I wanted to use the SDRAM was because it would allow me to do things such
as layering and making text simpler because I could update the screen rather than rendering a
new one each frame.

This never worked so I could not implement hire functions like text and imaging as easily, (I will
work on this after the class in the GPU module that is more instruction based)

CHARACTER MODE

Before pitching the project I worked on one of my end goals of getting text on the screen. I
chose the iconic Microsoft Latin font because it was iconic and was simple with how it divided
the characters. Things like kerning would be considered if I had excess time.

https://drive.google.com/file/d/1dKky_hVdC9blb6mkqQ52f_EU8sofT8pk/view?usp=sharing


5

This was the only way I could find the font which meant I would have to create
my own hex file for it.

To create a hex file I could use in my project I created this python script to turn the font
image into a hex file. It is shown below.https://hexed.it/

https://hexed.it/


6

Each character is 8 by 16 pixels and there is an 8 pixel buffer. It will be stored in the
SRAM because it doesn’t change over the course of the program. A small portion looks
like this.



7

The hardest part of this project is finding information on how to access both the SRAM
and SDRAM. One guide recommended using the control panel that comes with the
Altera board (or can be found online here:
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139
&No=502&PartNo=4)
This sadly wasn’t on the lab computers so I had to manually download it. Another
problem is that the control panel was only supported by the 32 bit drivers. The lab
computers also did not have these drivers and I couldn’t install them without admin
permissions. Instead I got Quartus on my own personal computer and installed the
drivers there. Then I could load the font files on my personal computer then program the
board with the lab computer. The control panel looks like this:

It has the ability to load both the SRAM and
SDRAM without having to implement my own personal loader.

https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=502&PartNo=4
https://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=139&No=502&PartNo=4


8

After checking that the rom worked by testing the data of one byte of the characters, I
got

A fun accident that happened while trying to display is shown below.
https://drive.google.com/file/d/1K8CLmRVzxOAjKKJAiyxzLQ4kRCJjGuhm/view?usp=sh

aring

Originally I used a simpler program to
look at singular words of data in order to
see if the SRAM was loading correctly.
This is an image from that test. The
horizontal lines are the only thing
changed as they check the bytes binary
values (0 is black pixel, 1 is red)

https://drive.google.com/file/d/1K8CLmRVzxOAjKKJAiyxzLQ4kRCJjGuhm/view?usp=sharing
https://drive.google.com/file/d/1K8CLmRVzxOAjKKJAiyxzLQ4kRCJjGuhm/view?usp=sharing


9

The final result looked like this, it fills the screen up with whatever character is selected
with the switches.
https://drive.google.com/file/d/1p8HliQSmONKqsRppa8V8IzgmA9m7iLuC/view?usp=sha
ring

7 SEGMENT MODE

Dividing pixels idea inspired by this website:
https://blog.thomaspoulet.fr/bit-banged-vga/

The 7 segment display mode is probably the most useful mode of the project because it
allows you to use the monitor as an extension to the existing 7 segment displays.
I first started out with my plan.
I had a resolution of 480*640 which I would want to divide the resolution by 32 to make it
simpler. This gives a new resolution of 15 by 20 new pixels. With 2 (32x32) new pixels
per segment we get a length of 4 new pixels (4*32x32 pixels) per module. With some
buffer of 1 new pixel width per segment you get a length of 5 new pixels. Because the
resolution is 20 this gives you 4 seven segments.

We need 4 bits to store the height (15) (possibly not because
we are only using the 7 of the 15 height) and 5 to store the
width (20). With 5 t flip flops on the hsync, clock and v_sync we
can divide their frequency by 32.

First thing was to create a 32 bit clock divider. I used the one
shown in lab 11 and removed half of them to keep 5 stages of t
flip flops. (synchronous). Then I displayed the result with a t flip
flop. The result is shown on the left.
Video of the screen above: horizontal divided by 32

https://drive.google.com/file/d/1p8HliQSmONKqsRppa8V8IzgmA9m7iLuC/view?usp=sharing
https://drive.google.com/file/d/1p8HliQSmONKqsRppa8V8IzgmA9m7iLuC/view?usp=sharing
https://blog.thomaspoulet.fr/bit-banged-vga/
https://drive.google.com/file/d/1bhRo_iLuQJGdKUgMdXhfn5qD_g61NPfP/view?usp=sharing


10

Then I made it reset every horizontal blank clock to get
this (shown on the left).

I then split the horizontal in a similar way and implemented counters. (one that counts
0-3 for horizontal and the other 0-7 for vertical)
Finally I was up to creating the pixels segments

Seven segment mode before splitting into 3 different segments

One problem that took me a long time to solve was
that I had forgotten that the seven_segment_decoder
was active on 0 rather than 1. This meant my 8 was a
blank screen. After solving that it worked almost just
as designed! The only problem now is that the screen
was offset 16 pixels. This is the whole 7 segment
module with the binary out.

https://drive.google.com/file/d/1VjZ0cdx5PWhsOOUON3mVtUiE3r5-TMCX/view?usp=sharing


11

This binary signal goes into the colorizer where it uses the color stored from the color
mode.



12

The colorizor only changes when in the color setting.

The finite state machine was very simple because I couldn’t get the SDRAM to work for
more complex instructions. It used the rocker switches to change modes, you press the
button when you want to change. Any input other than the 2 non 000 will be the same as
a 000 input.



13



14

All together it looks like this.



15

The 2 AND symbols are used for the blank and sync so that it pulls the blank or sync
when either blank or sync is 0. The muxes on the right hand side are used for switching
between the colorizer and the SDRAM. I couldn’t get the SDRAM to work properly so I
hard coded it to the colorizer.

USER MANUAL:
When you boot up the VGA Trial onto the board you must connect the board to an external
monitor using a VGA cable.
The board always starts in state 000. By changing the rocker switched on the right external
board you can change the mode selected. Then by pressing the push button bellow the rocker
switches you will change modes.
If in the mode 000 you will be in the color mode it will use the first 4 switches (0-3) for the red
value, the next 4 for green (4-7) and the last 4 for blue (8-11). This changes the color of the
entire screen. If you leave this mode the rest of the VGA Trial will use whatever color you
selected for other modes.

If in the mode 010 you will be in the 7 segment display mode where the value of the 3 seven
segments is equal to the 4 switches corresponding to them. (0-3 for the 1st, 4-7 for the 2nd,
8-11 for the 3rd)

If in the mode 100 you will be in the character mode where the value of the first 8 switches (0-7)
will select the ascii value (NOTE: THIS MODE ONLY WORKS WHEN FONT FILE IS
INSTALLED INTO SRAM)

Useful links:
https://blog.thomaspoulet.fr/assets/content/VGA/logic1.png
https://blog.thomaspoulet.fr/assets/content/VGA/bsferror.png
https://blog.thomaspoulet.fr/bit-banged-vga/
https://blog.thomaspoulet.fr/bit-banged-vga/
http://lslwww.epfl.ch/pages/teaching/cours_lsl/ca_es/VGA.pdf
https://web.mit.edu/6.111/www/labkit/vga.shtml

https://blog.thomaspoulet.fr/assets/content/VGA/logic1.png
https://blog.thomaspoulet.fr/assets/content/VGA/bsferror.png
https://blog.thomaspoulet.fr/bit-banged-vga/
https://blog.thomaspoulet.fr/bit-banged-vga/
http://lslwww.epfl.ch/pages/teaching/cours_lsl/ca_es/VGA.pdf
https://web.mit.edu/6.111/www/labkit/vga.shtml

